
Performance Analysis of the TCP/IP Protocol Under Unix

Operating System for High Performance Computing and

Communications∗

Hyok Kim, Hongki Sung, and Hoonbock Lee
Hallym Information Technology & Electronics Research Center

Hallym University
Chunchon, Kangwon-do, 200-702, Republic of Korea

{hkim, hksung, hblee}@sun.hallym.ac.kr

Compilation : December 23, 2002

Abstract

Among many protocols, the TCP/IP protocol suite
is the most widely used form of networking comput-
ers. With the advent of high speed communication
paradigms such as asynchronous transfer mode, as
well as with the advances of transmission medium
technologies such as optical fibers, the physical trans-
mission medium is no longer the performance bottle-
neck in communication systems. Thus, transport lay-
ers are currently receiving much attention since they
don’t seem to convey large bandwidths of lower layers
to the application users properly. Many other trans-
port protocols have been proposed and implemented,
which might perform better than TCP/IP. However,
due to the popularity of the TCP/IP, no other proto-
cols seem to replace its place in the near future. Thus,
emerging bandwidth hungry applications steadily re-
quire higher and higher performance of the TCP/IP.
In this paper, we analyze the TCP/IP performance
under UNIX operating systems in exchanging data
∗This paper appeared in the Proc. of High Performance

Computing ASIA ’97, pp. 499–504, May 1997. This research
was supported in part by a grant from the Ministry of Infor-
mation and Communication of Korean Government.

once a connection is established. By measuring ac-
curate data for the various aspects of the protocol
implementation, we try to clearly illustrate the ma-
jor bottlenecks and determine upper bounds on per-
formance. We also measure memory bandwidth re-
quirements in processing high-speed TCP/IP. Empir-
ical results show that the TCP/IP protocol itself can
handle up to 85 Mbps to process date under UNIX
operating systems when proper data link layer inter-
face is provided, requiring memory bandwidth of 172
Mbytes/sec.

1 Introduction

The TCP/IP protocol is truly the most widely used
form of networking in today’s computer communica-
tions. Since its first implementation in the late 1960s
as a research project for packet switching networks,
the TCP/IP protocol now forms basis for what is
called the worldwide internet, a wide area network
of more than forty million computers that literally
spans the globe[11].

With the advent of high speed communication
paradigms such Asynchronous Transfer Mode and

1



optical fiber technologies, also with the demand for
increase of emerging bandwidth-hungry applications,
transport layers of communication protocols are re-
ceiving much attention to identify whether current
transport protocols like TCP can adequately handle
such high speed and high performance requirements.
Limited bandwidth on the physical transmission me-
dia is no longer the performance bottleneck in com-
munication systems. Instead, processing of communi-
cation protocols inside the network nodes is the most
significant limiting performance factor of high-speed
networks.

There exist two major approaches to achieving high
performance transport components: (1) Design of
new high-speed protocols [2, 3], and (2) Optimization
of implementing existing protocols [4, 7]. Although
several new protocols have been proved and demon-
strated to give higher performance than TCP/IP,
they still remain in the laboratories due to the popu-
larity of the TCP/IP. It seems that no other protocols
would easily replace the TCP/IP’s place in the near
future. On the other hand, several improvements of
the TCP/IP have been proposed and made [4, 7]. De-
spite many arguments, it is still claimed that TCP/IP
is capable of serving the high performance demands
of future networks.

It has been known that major performance bottle-
necks in TCP/IP processing are data copies, check-
sum calculation, memory management, timers, etc.
Most of them lie in the interaction of the proto-
col with the operating system, not in the protocol
itself. Several measurement techniques have been
demonstrated to quantify bottlenecks [5, 8, 9]. Soft-
ware based measurements can trigger operating sys-
tem interrupts to acquire the current time which re-
quires the execution of numerous additional instruc-
tions such as saving registers, memory swapping, etc.
Thus, such techniques might give unacceptable per-
turbation. Hardware based measurement techniques
are desirable for more accurate analysis. Specially de-
signed hardware [10] or logic analyzer [8] have been
used to measure accurate execution times. How-
ever, such methods have limited flexibility and cannot
measure memory bandwidth requirements properly.

In this paper, we try to quantify the performance
bottlenecks of the TCP/IP protocol running in the

UNIX operating system. We focused the performance
analysis on exchanging data once a connection is es-
tablished. The purpose of our measurement and anal-
ysis is to see how much time is spent in the TCP and
IP layers to send a block of data and to process the
acknowledge returned by the receiving party. We also
measured how many memory accesses is required and
how many instructions are executed in doing so. In
addition, we measured time spent in the UNIX op-
erating system in sending data from user process to
the physical network.

2 Measurement of TCP/IP
performance under UNIX
operating system

Current UNIX(4.4-BSD Lite) implementation of the
TCP/IP protocol consists of four layers below the
application: The socket layer, the TCP layer, the
IP layer, and the data link layer. The socket layer
gives the interface between the application and the
TCP protocol, the TCP layer concerns with the end-
to-end communication functions, the IP layer with
the addressing and routing of packets, and the data
link layer with getting the packet onto and off of the
actual transmission media.

2.1 Methodology for Performance
Measurement

We focus only on the performance, in terms of exe-
cution time and memory bandwidth requirements, of
the data exchange once a connection is established,
although overhead of connecting and disconnecting
is also a performance concern. The purpose of this
kind of measurement is to quantify performance bot-
tlenecks in TCP/IP protocol processing in conjunc-
tion with UNIX operating systems. Since the time
required for connection establishment and discon-
necting it is much dependent on the communicating
party’s response, and also since it might not happen
frequently in transmitting large volume of data such
as multimedia data transmissions, we concentrate on
the data exchange performance.

2



It has been identified by several researchers that
major bottlenecks in TCP/IP processing under UNIX
operating system are in data copy from user space to
kernel space, another data copy from kernel space to
the network device, checksum calculation, network
buffer(mbuf) managements, etc. To quantify such
bottlenecks, we set up the measurement environment
as shown in figure 1 and 2. the parenthesized num-
bers in the figure 1 and 2 show the points where we
measure the performance of TCP/IP processing. We
use a data exchange scenario as follows. Suppose that
a connection is established between the system under
measurement and the communication party.

Figure 1: Performance measurement setup: sender’s
part. Two TCP/IP running computers are connected
via an isolated Ethernet.

In figure 1, at(1), memory is allocated by the op-
erating system to get a copy of user created data.
Then, user data are copied from the user space to
the kernel space(socket buffer) at(2). TCP checksum
calculation is done at (3), and IP checksum at (4).
Finally, data in the kernel space is transmitted to
the network device at (5). Once data transmission is
done, the system is waiting for an acknowledgment
from the communicating party. When the acknowl-
edgment arrives at the network device (6), IP pro-
cesses it at (7), and then, TCP receives at (8). This
concludes the data transmission.

In figure 2, at (1), a packet arrives in the network
interface and the device driver enqueues the packet

Figure 2: Performance measurement setup: receiver’s
part

into the queue of IP. IP(2) and TCP(3) processing,
such as address check, checksum calculation and con-
nection name name check, is performed. Then the
kernel copies data into the user buffer (4). If there
is no error in the received data, an acknowledgment
segment is constructed by TCP(5) and sent through
IP (6) and the network device (7).

For the system under measurement, we used a
platform as follows: Our experimental machine was
based on the Micronics M54Hi+ motherboard with a
150MHz Intel Pentium processor, a 256K byte cache,
and 32M bytes of main memory. Our machine runs
the FreeBSD which is a variant of UNIX and its
TCP/IP implementation is based on the 4.4BSD-
Lite. The Micronics M54Hi+ motherboard has a PCI
bus and a ISA bus. The machine is equipped with a
PCI Wide-SCSI controller and a 3Com ISA Ethernet
controller.

2.2 Performance Measurement Tool
and Metrics

We made our measurements using event/cycle coun-
ters implemented in the Intel Pentium processor. Al-
though such counter are not documented for public
users, they have been reported in [9] and an example
application can be found in [1].

The Intel Pentium processor has one 64-bit cycle

3



counter and two 64-bit software-configurable event
counters. Each event counter can be configured to
count one of a number of different hardware events
such as data reads, data writes, instructions exe-
cuted, hardware interrupts, data read cache misses,
etc. In addition, the counters can be configured to
count events in the kernel mode or in the user mode
or in both. However, we counted events only in the
kernel mode since the TCP/IP in the FreeBSD is im-
plemented in the kernel. It should be noted that the
cycle counter continues to increment when the ma-
chine is halted, but no other event counters are in-
cremented.

As performance metrics, we measured cycle counts,
instruction counts, data read counts, and data write
counts. The cycle counts combined with the in-
struction counts will tell us the execution time and
the complexity of the corresponding implementation.
The data read/write counts will show us the memory
bandwidth requirement of the corresponding func-
tion.

3 Empirical Results and per-
formance Analysis

Using the measurement setup as described in figure
1 and 2, we measured execution time, instruction
counts, and memory access counts when 100, 300,
500, and 1440 bytes of data are transmitted across
the Ethernet. Figure 3 shows execution time(cycle
counts) of socket, TCP, IP, and Ethernet when 100,
300, 500, and 1440 bytes of data are sent and then
acknowledgment is received for the data sent. Figs.
4 and 5 depict instruction counts and memory ac-
cess counts, respectively. Figure 6, 7, and 8 show the
cycle counts, instruction counts, and memory access
counts when receiving data across the Ethernet.

The graphs reveal that most time is spent in send-
ing and receiving data inside the data link layer,
Ethernet. This is mainly due to the relatively low
speed(10Mbps) of the transmission medium. So, we
disregard the latency generated by the data link lay-
ers to see the performance of the TCP/IP itself under
the UNIX environment. From the graphs, time spent

to send 1440 bytes of data in socket, TCP, and IP lay-
ers and then to receive an acknowledgment is approx-
imately 0.21 ms. Time spent to receive 1440 bytes
of data in IP, TCP, and socket layers and then to
send an acknowledgment is about 0.19 ms. Thus, the
TCP/IP under UNIX environment can process data
up to 56Mbps for sending and 62 Mbps for receiving,
requiring memory bandwidth of 61 Mbytes/sec and
172 Mbytes/sec, respectively.

If we further neglect the acknowledgment process-
ing overhead, we might be able to see upper bounds
of data sending and receiving performance of the
TCP/IP under UNIX environment. The graphs show
that time required to send 1440 bytes of data through
socket, TCP, and IP layers without receiving ac-
knowledgment is about 0.13 ms. Time required to
receive 1440 bytes of data without sending acknowl-
edgment is about 0.14 ms. Therefore, the TCP/IP
under UNIX environment can send and receive data
up to 87 Mbps and 85 Mbps when data acknowledg-
ment is properly processed on bulk data transmission
[6], in addition to proper data link interface is pro-
vided. This is an upper bound performance measured
in our experimental setup.

4 Concluding Remarks

To analyze performance of the TCP/IP under UNIX
operating system, we focused on the performance of
the data exchange during a regular data transfer once
a connection is established. Performance is measured
in terms of cycle counts, executed instruction counts,
data read counts, and data write counts. Since the
cycle counter Intel Pentium processor continues to in-
crement even when the machine is halted, also since
it increments when the processor is switched to run
other processes and interrupts, it is very hard to mea-
sure the precise execution time of the program block
being executed. To ensure the measurement as accu-
rate as possible, we repeated the same measure sev-
eral time to take out such results which are far off
the standard deviation.

We should note that the perturbation of measure-
ment is not due to the measurement errors but due to
the running conditions of the Pentium processor. For

4



Figure 3: Measurement of cycle counts in TCP/IP
send processing

Figure 4: Measurement of dynamic instruction
counts in TCP/IP send processing

Figure 5: Measurement of memory access counts in
TCP/IP send processing

Figure 6: Measurement of cycle counts in TCP/IP
receive processing

5



Figure 7: Measurement of dynamic instruction
counts in TCP/IP receive processing

Figure 8: Measurement of memory access counts in
TCP/IP receive processing

example, depending on instruction and data cache
miss ratios, the cycle counts vary greatly. Also, the
instruction counts are much affected by the internal
pipelines state of the processor. Therefore, our mea-
surement data are taken only when cache miss rates
and pipleline state are within some specified ranges,
discarding ones far out of ranges. By doing so, we can
have an idea of relative execution time of the program
under measure using the cycle counts in conjunction
with the event counts such as instruction counts and
data read/write counts.

We also did not consider functions which are not
directly related with the regular data transfer such
as urgent segment, error messages, etc. Thus, the
overall performance which might be drawn from our
empirical results should imply upper bounds on per-
formance.

References

[1] J. B. Chen and et al. The Measured Performance
of Personal Computer Operating Systems. ACM
Trans. Computer Systems, Feb. 1996.

[2] D. Cheriton. VMTP as the transport layer for high-
performance distributed systems. IEEE commun.,
June 1989.

[3] G. Chesson. XTP-protocol engine VLSI for real-time
LANs. EFOC/LAN 88 (Amsterdam,Hollan), 1988.

[4] D. D. Clack and V. Jacobson. An analysis of TCP
processing overhead. IEEE Commun., 27:23–29,
June 1989.

[5] J.-H. Huang and C.-W. Chen. On Performance Mea-
surements of TCP/IP and its Device Driver. IEEE
Proc. of 17th Conference on Local Computer Net-
works, pages 568–575, 1992.

[6] V. Jacobson. 4BSD TCP Header Prediction. Com-
puter Commun. Review, 20(2):13–15, Apr. 1990.

[7] V. Jacobson. Efficient protocol implementations.
ACM SIGCOMM 90 Tutorial, Sep. 1990.

[8] J. Kay and J. Pasquale. The Importance of Non-
data Touching Processing Overheads in TCP/IP.
ACM SIGCOMM Computer Communication Re-
view, 23:259–268, Oct. 1993.

[9] T. Mathisen. Pentium secrets. Byte, pages 191–192,
July 1994.

[10] A. Mink and et. al. Hardware Measurement Tech-
niques for High-speed Networks. Journal of High
Speed Networks, 3(2):187–207, 1994.

6



[11] W. R. Stevens. TCP/IP Illustrated:The Protocols.
Addison-Wesley, 1994.

7


