
Performance Analysis and Feasibility Study of a Parallelized TCP/IP

Implementation∗

Hyok Kim, Hongki Sung, and Hoonbock Lee
Hallym Information Technology & Electronics Research Center

Hallym University
Chunchon, Kangwon-do, 200-702

{hkim, hksung, hblee}@sun,hallym.ac.kr

Abstract

Due to the popularity of the TCP/IP protocol suite, no
other protocols seem to replace its place in the near fu-
ture. However, emerging bandwidth hungry applications
steadily require higher and higher performance of the
TCP/IP. Several improvements have been proposed and
made. Notably, a parallelized TCP/IP structure has been
proposed in [1]. In this paper, we quantify the performance
of the parallelized structure by extracting functions from
the 4.4BSD-Lite TCP/IP implementation being executed
in a Pentium processor. The empirical results shows that
simple functional parallelization cannot improve the per-
formance much enough for the future computer communi-
cation subsystems so that pipelining technique as well as
VLSI implementation of critical functions should be uti-
lized to achieve the high performance TCP/IP.

1 Introduction

The TCP/IP protocol suite is one of the most widely used
form of networking between computers. Since its first im-
plementation in the late 1960s, several improvements have
proposed and made. Despite many arguments, is is still
claimed that it is capable of serving the high performance
demands of future networks and no other protocol suite
can easily replace the TCP/IP’s place mainly due to its
popularity [2].

A typical TCP/IP protocol suite stack consists of several
protocols in a layered structure. Although several proto-
col entities exist within a TCP/IP host, only few of them
are time critical, meaning their executions are closely re-
lated with the data path during a regular data transfer.
Such time critical protocols include TCP, UDP, and IP.
Other protocol entities have to be processed only when
special situations occur. In the quest for increasing the
performance of a communication subsystem, parallelized

∗This paper appeared in the Proc. of Korean Institute of Com-
munication Sciences Conference, vol. 15, pp. 443–446, Nov. 1996.
This research was supported by a grant from the Ministry of Infor-
mation and Communication of Korean Government.

structures of TCP and IP have been analyzed and pro-
posed [1, 3]. However, neither specific implementations
nor quantitative performance measurements are shown.

In this paper, we try to quantify the performance of
a parallelized TCP/IP structure proposed in Ref. [1],
in terms of execution cycles, executed instruction counts,
data read counts, and data write counts. Such measures
are done in each function of the parallel structure. In
doing so, we used an Intel Pentium based machine run-
ning the FreeBSD, a UNIX variant. The empirical results
show that simple functional parallelization of the existing
TCP/IP implementation alone cannot improve the perfor-
mance much so that we should utilize pipelining techniques
as well as VLSI implementations of time consuming func-
tions to achieve high enough performance of the TCP/IP
for the future computer communications subsystem.

2 Summary of Parallelized
TCP/IP Structure

Receive and send components of TCP/IP protocol process-
ing can be structured in parallel, operating concurrently
on different packets. It is shown that the coarse granular-
ity of this division is appropriate for IP, but not for TCP
because of the connection oriented nature of the protocol
[1]. In this Section, we summarize a parallelized TCP/IP
structure proposed in Ref. [1, 3] and identify functions in
the parallel structure which are critical to the overall per-
formance of the TCP/IP protocol suite. Such functions are
investigated in detail in Section 3 to analyze performance
and feasibility of the proposed TCP/IP parallel structure.

2.1 Decomposition and Data Flow

Figure 1 illustrates coarse grain decomposition and data
flow within the TCP/IP layers. The TCP layer is subdi-
vided into five major components: TCPDataSend, TCP-
DataReceive, TCPConnControlSend, TCPConnControl-
Receive, and TCPConnDynamics. The IP layer is subdi-
vided into two major components. IPSend and IPReceive,
with accompanying protocols ICMP and ARP.

1



Figure 1: Data flow within TCP/IP layer

Assuming an already established connection, the regular
data path flows through TCPDataReceive, IPSend, and
IPReceive components. In the TCPDataReceive, the reg-
ular data path is distinguished from the urgent data path.
A third type of TCP segments involves the processing of
connection management and control functions. Such seg-
ments are forwarded to TCPConnControlReceive. Other
possible data flows, shown in Fig. 1, represent error cases.
If TCP detects an error, the TCPConnControlReceive is
invoked. If an error is detected within IPReceive, ICMP is
informed and ICMP message might be generated and sent
through IPSend. In addition to these flows, the TCPCon-
nDynamics might generate segments in special situations,
such as the timeout of a retransmission timer. Finally, the
ARP is called by IP to resolve address.

It is easy to see that TCPDataSend, TCPDataReceive,
IPSend, and IPReceive components are more time critical
than others. Thus, we further decompose such a com-
ponent into several functions, in the following subsection,
to fully extract potential parallelism in segment process-
ing. However, we should note that concurrent processing
of other components would also improve the performance,
in case of multiple active connections.

2.2 Parallelism within Each Component

Detailed description of each function is this subsection can
also be found in Ref. [1]. In this subsection, a name of
each function is written in italic for clarity.

2.2.1 TCPSend

Figure 2 depicts the parallel structure of the TCPSend
component. TCPSend may receive multiple send com-
mands from an application. In this case the corresponding
data is queued until the segment function decides to form a
TCP segment to be sent. Concurrently, parts of the TCP

header and the option fields can be constructed. Complet-
ing the segment function, the header fields can be filled.
Then, TCP checksum can be calculated, the header com-
pleted, and the segment forwarded to IPSend component.

Figure 2: Parallel structure of TCPSend

2.2.2 IPSend

Figure 3 shows functions in the IPSend component and
their potential parallelism. IPSend receives an IP data-
gram from TCP. It first performs the routing function.
Upon completion of the routing function, address transla-
tion using the ARP protocol, fragmentation, and IP header
processing can be performed in parallel. After construc-
tion of a fragment and completion of the header generation
functions, the checksum can be calculated and the header
completed.

Figure 3: Parallel structure of IPSend

2.3 IPReceive

Parallel data flow within the IPReceive component is de-
scribed in Fig. 4. IPReceive an IP fragment from the lower
layers. On arrival of the fragment, all checks on header

2



fields can be performed in parallel with the IP checksum.
For a correct frame, option processing function and the re-
assembly function can be performed in parallel. After com-
pletion of the reassembly function, IP datagram is passed
to TCPReceive.

Figure 4: Parallel structure of IPReceive

2.3.1 TCPReceive

Figure 5 shows parallel data flow within the TCPReceive
component. For every TCP segment received the local con-
nection name has to be identified. Then, various header
check functions should be performed in parallel with the
TCP checksum function. After that, correctly received
data segments have to be ordered before they can be re-
leased to the receive function for delivery to the applica-
tion.

Figure 5: Parallel structure of TCPReceive

3 Performance and Feasibility
Analysis for the Parallelized
TCP/IP Structure

In this Section, we discuss what we measured as perfor-
mance metrics and how we did. Finally we show the em-
pirical results.

3.1 Measurement Tool and Performance
Metrics

We made our measurement using event/cycle counters im-
plemented in the Intel Pentium processor. Although such
counters are not documented for public users, they have
been reported in [4] and an example application can be
found in [5].

The Intel Pentium processor has one 64-bit cycle counter
and two 64-bit software-configurable event counters. Each
event counter can be configured to count one of a num-
ber of different hardware events such as data reads, data
writes, instructions executed, hardware interrupts, data
read cache misses, etc. In addition, the counters can be
configured to count events in the kernel mode or in the
user mode or in both. However, we counted events only
in the kernel mode since the TCP/IP in the FreeBSD is
implemented in the kernel. It should be noted that the
cycle counter continues to increment when the machine is
halted, but no other event counters are incremented.

To compare and contrast performance of functions in
the parallelized TCP/IP structure, we measured cycle
counts, instruction counts, data read counts, and data
write counts. The cycle counts combined with the in-
struction counts will give us some idea of how complex
the function is. The data read/write counts will tell us
the memory bandwidth requirement of the corresponding
function.

3.2 Empirical Results

In measuring performance of the parallelized structure of
TCP/IP proposed in Ref. [1], we used a platform as fol-
lows: Our experimental machine was based on the Micron-
ics M54Hi+ motherboard with a 166MHz Intel Pentium
process, a 256 K byte cache, and 32M bytes of main mem-
ory. Our machine runs the FreeBSD which is a variant
of UNIX and its TCP/IP implementation is based on the
4.4BSD-Lite. The Micronics M54Hi+ motherboard has a
PCI bus and a ISA bus. The machine is equipped with
a PCI Wide-SCSI controller and a 3Com ISA Ethernet
controller.

Figure 6 depicts performance of the time critical func-
tion in the IPSend component. The graph shows that
performance of IPSend is dominated by the sequential ex-
ecution of IP routing and IP checksum functions. Figure
7 shows performance of IPReceive where the IP check-
sum function determines performance of IPReceive. Fig-

3



ure 8 and figure 9 depicts the performance of TCPSend
and TCPReceive, respectively, where the segment size of
1412 bytes is used.

Figure 6: Performance of IPSend

To estimate speedup due to the parallelization, we also
measured the performance of the sequential executions
of the IPSend, IPReceive, TCPSend, TCPReceive com-
ponents. Using the results from the cycle counts, esti-
mated speedups of such components are 1.06, 2.55, 1.14,
and 1.02, respectively. Thus, overall speedups of the send
and receive parts of the TCP/IP are 1.13 and 1.05, re-
spectively. Thus, according to our performance analysis,
we could conclude that simple functional parallelization
of the existing TCP/IP code cannot improve performance
much enough for the future computer communication sub-
systems. We should note that this estimated speedup is
owing only to the simple functional parallelization, not
considering overlapping of functions in a pipelined man-
ner. With the elaborate pipeline design, we could further
increase the speedup. In addition, with the aid of VLSI
engines of time consuming functions such as checksum cal-
culation, we can enhance the performance of the TCP/IP
protocol suite.

4 Discussions and Concluding Re-
marks

To analyze the performance of the parallelized TCP/IP
structure, we focused on the time critical functions in con-
juction with the data path during a regular data transfer.
Performance is measured in terms of cycle counts, exe-
cuted instruction counts, data read counts, and data write
counts. Since the cycle counter in the Pentium processor

Figure 7: Performance of IPReceive

Figure 8: Performance of TCPSend

4



Figure 9: Performance of TCPReceive

continues to increment even when the machine is halted,
also since it increments when the processor is switched to
run other processor and interrupts, it is very hard to mea-
sure the precise execution time of the program block being
executed. To ensure the measurement as accurate as pos-
sible, we repeated the same measure several times to take
out such results which are far off the standard deviation.
Thus, we can have a rough idea of relative execution time
of the program under measurement using the cycle counts
in conjunction with the event counts such as instruction
counts and data read/write counts.

We also did not consider functions which are not directly
related with the regular data transfer such as urgent seg-
ment, error messages, etc. Thus, the overall performance
which might be drawn from our empirical results should
imply nearly peak performance.

To achieve higher throughput of the TCP/IP protocol,
the pipelining technique should be used combined with
the parallel structure. In doing so, we need to further
analyze each function in detail for the determination of
the optimum number of pipeline stages and load balance
among stages. We may need to subdivide some functions
into more sub-functions or group some together for effi-
cient pipeline design. In addition, VLSI implementation
of time consuming functions should help in increasing the
performance.

References

[1] O. G. Koufopavlou, A. N. Tantawy, and M. Zitterbart,
“Analysis of TCP/IP for High Performance Parallel

Implementations,” Proc. of 17th IEEE conference on
Local Computer Networks, pp. 576–585, Sep. 1992.

[2] D. D. Clack and V. Jacobson, “An analysis of TCP
processing overhead,” IEEE Commun., vol. 27, pp. 23–
29, June 1989.

[3] O. G. Koufopavlou, A. N. Tantawy, and et.al, “Paral-
lel TCP for High Performance Communication Subsys-
tems,” Proc. of 17th IEEE Global Telecommunications
Conference, pp. 1395–1399, Dec. 1992.

[4] T. Mathisen, “Pentium secrets,” Byte, pp. 191–192,
July 1994.

[5] J. B. Chen and et al, “The Measured Performance of
Personal Computer Operating Systems,” ACM Trans.
Computer Systems, Feb. 1996.

5


